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This paper deals with hypothesis testing for independent time series with unequal length. It proposes a
spectral test based on the distance between the periodogram ordinates and a parametric test based on the
distance between the parameter estimates of fitted autoregressive moving average models. Both tests are
compared with a likelihood ratio test based on the pooled spectra. In all cases, the null hypothesis is that
the two series under consideration are generated by the same stochastic process. The performance of the
three tests is investigated by a Monte Carlo simulation study.

Keywords: hypothesis testing; ARMA models; spectral analysis

1. Introduction

The classification and clustering of time series have been studied in literature using both time and
frequency domain methods. The comparison of time series using spectral analysis approaches was
considered by Coates and Diggle [1], Diggle and Fisher [2], Dargahi-Noubary [3], Diggle and al
Wasel [4], Kakizawa et al. [5], Maharaj [6], Caiado et al. [7,8], among others. In the time domain,
some relevant works are by Maharaj [9,10], Piccolo [11] and Corduas and Piccolo [12]. For a
review of the basics of time series clustering and its applications, see the survey by Liao [13].

Caiado et al. [8] proposed a spectral domain method for clustering time series of unequal
length. Their approach consists in calculating the periodogram ordinates of time series of any
length at a common Fourier frequency and then using a discrepancy statistic to investigate sim-
ilarities between the time series. We now extend this procedure for hypothesis testing purposes.
In particular, we introduce a periodogram-based test of the hypothesis that two independent time
series are realizations of the same stationary process. This nonparametric test is compared with
a parametric approach based on the distance between the parameter estimates of autoregressive
moving average (ARMA) models and a likelihood ratio test based on the pooled spectra. We
assess the power and size of the three test statistics for different sample sizes by a Monte Carlo
simulation study.
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1716 J. Caiado et al.

The remainder of the paper is organized as follows. In Section 2, we present a periodogram-
distance-based test of the hypothesis that two time series of unequal lengths are realizations of
the same generating process. In Section 3, we develop a parametric test in the time domain also to
determine whether two time series are generated by the same stochastic mechanism. In Section 4,
we present a simulation study to compare the performance of the proposed tests with a likelihood
ratio approach. Section 5 summarizes the paper.

2. A periodogram-distance-based test

2.1. Interpolated periodogram

Let {xt , t = 1, . . . , nx} and {yt , t = 1, . . . , ny} be two stationary processes with different sample
sizes. Without loss of generality assume that nx > ny. The periodogram of xt is given by

Px(ωj) = 1

nx

∣∣∣∣∣
nx∑

t=1

xte
−itωj

∣∣∣∣∣
2

, (1)

where ωj = 2π j/nx, for j = 1, . . . , mx, with mx = [nx/2], the largest integer less or equal to nx/2.
Similar expression is defined for Py(ωp), with ωp = 2πp/ny, for p = 1, . . . , my, with my = [ny/2].
When mx �= my, the Fourier frequencies at which the periodogram ordinates are computed do
not coincide. Therefore, the Euclidean distance between the periodogram ordinates Px(ωj) and
Py(ωp) is not adequate for comparing time series xt and yt . To deal with the problem of unequal
length, Caiado et al. [8] suggest to construct an interpolated periodogram for the longer series
at the frequencies defined by the shorter series. Without loss of generality, let r = [p(mx/my] be
the largest integer less or equal to p(mx/my) for p = 1, . . . , my and my < mx. The periodogram
ordinates of xt can be estimated as

PI
x(ωp) = Px(ωr) + (Px(ωr+1) − Px(ωr)) × ωp,y − ωr,x

ωr+1,x − ωr,x

= Px(ωr)

(
1 − ωp,y − ωr,x

ωr+1,x − ωr,x

)
+ Px(ωr+1)

(
ωp,y − ωr,x

ωr+1,x − ωr,x

)
. (2)

This procedure will yield an interpolated periodogram with the same Fourier frequencies of the
shorter periodogram Py(ωp). If we are only interested in the dependence structure and not in
the process scale, we can standardize the periodograms, dividing them by the sample variances,
and then taking logarithms: log NPI

x(ωp) = log(PI
x(ωp)/σ̂x) and log NPy(ωp) = log(Py(ωp)/σ̂y).

Figure 1 illustrates the interpolation procedure with two simulated processes. This method seems
to work well for comparison purposes. An illustrative application of the spectral-discrepancy
statistic to clustering time series is presented by Caiado et al. [8].

2.2. Hypothesis testing

We now suggest a test of hypotheses to determine whether two independent time series are
realizations of stochastic processes. Given two independent stationary series xt and yt , with nx =
ny, the null hypothesis to be tested is H0 : fx(ωj) = fy(ωj), that is, there is no difference between
the underlying spectra of the series {xt} and {yt} at all Fourier frequencies ωj.
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Figure 1. Interpolation of the log-normalized periodogram ordinates of an ARFIMA(0,0.45,0) with nx = 40 from an
ARMA(1,0), φ = 0.95 with ny = 24.

Since, asymptotically, Px(ωj) ∼ fx(ωj)χ
2
(2)/2, where fx(ω) is the spectral density function, it

follows that

E

[
Px(ωj)

γ̂0,x

]
= fx(ωj)

σ 2
x

(3)

and

Var

[
Px(ωj)

γ̂0,x

]
= f 2

x (ωj)

σ 4
x

. (4)

Similar expressions apply to the periodogram of yt . A good approximation to E[log(f̂x(ωj)/γ̂0,x)]
and Var[log(f̂x(ωj)/γ̂0,x)] is the sample mean and sample variance of the log-normalized
periodogram, that is,

E

[
log

(
f̂x(ωj)

γ̂0,x

)]
≈ 1

mx

mx∑
p=1

log NPx(ωj) = xLNP (5)

and

Var

[
log

(
f̂x(ωj)

γ̂0,x

)]
≈ 1

mx

mx∑
p=1

[log NPx(ωj) − x2
LNP]2 = s2

LNP,x. (6)

Similar expressions are given for yLNP and s2
LNP,y.

Under some suitable conditions, the logarithmic transformation of the sample spectrum is closer
to the normal distribution than to a chi-square distribution [14]. The following statistic provides
a test of significance for comparing the log-normalized periodograms of the two series,

DNP = xLNP − yLNP√
(s2

LNP,x + s2
LNP,y)/m

. (7)

This statistic is approximately normally distributed with zero mean and unit variance. For different
lengths, mx �= my, regular periodograms cannot be used as the Fourier frequencies are different.
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1718 J. Caiado et al.

To deal with this problem, we calculate the interpolated periodogram for the longer series xt at
the frequencies ωp = 2πp/ny, for p = 1, . . . , my, as defined in Equation (2), and then use the test
statistic

DI
NP = xLNPI − yLNP√

(s2
LNPI ,x

+ s2
LNP,y)/my

, (8)

where xLNPI = (1/my)
∑my

p=1 log NPI
x(ωp), s2

LNPI ,x
= (1/my)

∑my

p=1[log NPI
x(ωp) − x2

LNPI ]2 and
my < mx.

For reference, we consider the problem of testing equality of spectral densities using a
likelihood ratio approach (see, e.g. [15]). For equal lengths, mx = my = m, we compute the
pooled normalized periodogram NP(ωj) = 1

2 [NPx(ωj) + NPy(ωj)] under the null hypothesis
H0 : fx(ωj) = fy(ωj) and use the likelihood ratio test

LRT = −
m∑

j=1

log NPx(ωj) −
m∑

j=1

log NPy(ωj) + 2
m∑

j=1

log NP(ωj), (9)

which is distributed proportionally to a chi-square random variable. This test can be easily extended
to the time series of unequal length using the reduced periodogram approach [8]. In practice, this
consists in calculating both periodograms at a common Fourier frequency. In our simulation study,
we suggest computing the periodogram of the longer series at the frequencies of the shorter series.

3. A parametric approach

The problem of comparison of series of unequal length can also be analysed by a parametric
approach. Let zt , t = 1, 2, . . . , n be a time series, represented by a stationary and invertible ARMA
or ARMA(p,q) process,

φp(B)zt = θq(B)εt , (10)
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Figure 2. Times series generated from processes (a) AR(1), φ = 0.1, 0.3, 0.5, 0.7, 0.9, (b) ARMA(1,1), φ = 0.2,
θ = −0.1, −0.3, −0.5, −0.7, −0.9, (c) AR(1), φ = 0, 0.2, 0.4, 0.6, 0.8 and (d) ARFIMA(1,d,0), d = 0, 0.1, 0.2, 0.3, 0.4.
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Journal of Statistical Computation and Simulation 1719

where φp(B) = 1 − φ1B − · · · − φpBp and θq(B) = 1 − θ1B − · · · − θqBq are polynomials of
orders p and q, B is the back-shift operator Bkzt = zt−k , and εt is a Gaussian white noise process
with zero mean and constant variance σ 2

ε .
Suppose we have two independent time series xt and yt generated by the same ARMA(p,q)

process, but with different parameter values. Let the k = p + q estimated parameters be grouped in
the vectors β̂x and β̂y with estimated covariance matrices Vx and Vy, respectively. We want to check
whether they are different realizations of the same stochastic process, so that E[β̂x] = E[β̂y] = β.
Then, δ = β̂x − β̂y for large samples will be an approximately normally distributed vector with
zero mean and covariance matrix

Vδ = Vx + Vy, (11)

and therefore, we can use the statistic

DP = δ′V−1
δ δ, (12)
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Figure 3. Estimates of power and size of 10% tests of significance for AR(1), φ = 0.5 versus AR(1), φ = 0.1, 0.3,
0.5, 0.7, 0.9.
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1720 J. Caiado et al.

which is asymptotically a chi-square distribution with k degrees of freedom under the null βx = βy.
Hamilton [16, Section 14.3] suggested a similar statistic to test for structural stability of ARMA
models over different subperiods.

In order to test if two generating ARMA processes are equal, the model for each time series can
be selected by Akaike’s information criterion (AIC) or Bayesian’s information criterion (BIC).
If the obtained model is the same for the two time series, then the statistic DP is computed by
using the estimated parameters in each time series. If the selected models are different, then the
problem is more involved. Two methods have been proposed:

(i) We can start fitting a large ARMA model to both processes which encompass the two models
to be compared, for instance, the larger of two AIC or BIC selected models. This method
has two main problems: (1) the estimated parameters will be highly correlated for the
overparametrized estimated model (or models) and the corresponding covariance matrix
(or matrices) may be close to singular; (2) we have to be very careful to avoid possible near
cancellation of the autoregressive (AR) and moving average (MA) roots on both sides.
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Figure 4. Estimates of power and size of 10% tests of significance for ARMA(1,1), φ = 0.2 and θ = −0.5 versus
ARMA(1,1), φ = 0.2 and θ = −0.1, −0.3, −0.5, −0.7, −0.9.
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(ii) Alternatively, in order to avoid the serious problem of near cancellation of roots, we can
use AR approximations and thus fit to both processes the larger selected AR model and
then compare the estimated parameters [9]. This method has two drawbacks. First, we may
get very much correlated estimated parameters, specially when we have MA generating
processes. Second, we may need very large AR models.
Given these problems, we propose an alternative approach to apply the parametric test when
the selected models are different.

(iii) We fit both selected models, say M1 and M2, to both time series and compute the statistic DP

in these two situations, that is, DP(M1) and DP(M2). If DP(M1) ≤ χ2
(k1)

and DP(M2) ≤ χ2
(k2)

,
where k1 and k2 are the degrees of freedom associated with the models M1 and M2, the null
hypothesis is not rejected and we conclude that the processes are generated by the same
model. If the null hypothesis is rejected in one of the models, or in both, then we conclude
that the generating processes are different. Since we have two comparison statements to be
made, the Bonferroni inequality suggests each test with a significance level α/2 to ensure
that the overall significance level is at most α. In our simulation study, we will use this
alternative approach (iii).
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Figure 5. Estimates of power and size of 10% tests of significance for white noise versus AR(1), φ = 0, 0.2, 0.4, 0.6, 0.8.
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1722 J. Caiado et al.

4. Monte Carlo simulations

We obtained the estimates of the power and size of the proposed tests for simulated series from
the following processes:

(a) AR(1), φ = 0.5 versus AR(1), φ = 0.1, 0.3, 0.5, 0.7, 0.9;
(b) ARMA(1,1), φ = 0.2, θ = −0.5 versus ARMA(1,1), φ = 0.2, θ = −0.1, −0.3, −0.5, −0.7,

−0.9;
(c) White noise versus AR(1), φ = 0, 0.2, 0.4, 0.6, 0.8;
(d) ARMA(1,0), φ = 0.5 versus ARFIMA(1,d,0), φ = 0.5, d = 0, 0.1, 0.2, 0.3, 0.4;
(e) AR(1), φ = 0.7 versus AR(1), φ = 0.7, 0.8, 0.9, 1.0.

In case (a), we compare low-order models of similar type and similar autocorrelation functions.
In case (b), we compare selected ARMA processes in order to deal with peak spectra. In case
(c), we compare a white noise process with a low-order AR process. In case (d), we compare
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Figure 6. Estimates of power and size of 10% tests of significance for ARMA(1,0), φ = 0.5 versus ARFIMA(1,d,0),
φ = 0.5 and d = 0, 0.1, 0.2, 0.3, 0.4.
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stationary long-memory and short-memory processes. In case (e), we compare stationary and
near-nonstationary AR processes. The ARMA models were generated with zero mean and unit
variance white noise. The fractional noise in autoregressive fractionally integrated moving average
(ARFIMA) model was simulated using the finite Fourier method of Davies and Harte [17]. Figure 2
shows the plots of time series from the generated processes (a)–(d).

From these comparisons, we are able to see how the tests work for distinguishing similar
models with different parameters. From the considerable set of values for the parameters, we
can verify whether an increasing difference leads to better test power. For each of the consid-
ered processes, we simulated pairs of series of equal lengths (n1, n2) = {(50, 50), (100, 100),
(200, 200), (500, 500), (1000, 1000), (2000, 2000)} and unequal lengths (n1, n2) = {(100, 50),
(150, 75), (200, 100), (500, 250), (1000, 500), (2000, 1000)}. The results were based on 1000
replications of each pair of processes. For the parametric approach, we fitted ARMA(p,q) models
to the series, with the orders p = 0, 1, 2, 3 and q = 0, 1, 2, 3 selected by BIC (the AIC does not
work in selecting models for hypothesis testing, as noted by Peña and Rodriguez [18]).

Figures 3–6 provide estimates of the size and power for cases (a)–(d) (stationary versus sta-
tionary) for 10% level of significance using the three tests discussed above. Figure 7 gives the
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Figure 7. Estimates of power and size of 5% tests of significance forAR(1), φ = 0.7 versusAR(1), φ = 0.7, 0.8, 0.9, 1.0.
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power and size estimates in the case (e) (stationary versus near nonstationary) for 5% level of
significance.

As expected, the tests for large samples are more powerful than the tests for small samples.
When the series are generated from the pairs of processes: (a)AR(1), φ = 0.5 versusAR(1), φ �=

0.5; (b) ARMA(1,1), φ = 0.2, θ = −0.5 versus ARMA(1,1), φ = 0.2, θ �= −0.5; and (c) white
noise versus AR(1), φ > 0, the power of the parametric test for small samples is larger than the
periodogram-based test.

When the series are generated from the pairs of processes: (d) AR(1), φ = 0.5 versus
ARFIMA(1,d,0), φ = 0.5, d > 0; and (e)AR(1), φ = 0.7 versusAR(1), φ > 0.7, the performance
of the two tests seems to be similar for all the sample sizes considered.

For the parametric test, overall estimates of the size for small samples exceed slightly the
significance levels when the two series were simulated from the same process, whereas for the
periodogram-based test the estimated sizes were very close to the significance levels and do not
change significantly with the increasing sample.

A limitation of the parametric test is the need of previously fitting ARMA models of several
time series in order to compute the distances. In contrast, the periodogram-based test is relatively
simple and computationally efficient and does not require the choice of particular models.

From the simulation study, we also see that, in general, the performance of the periodogram-
distance-based test is better than the likelihood ratio test. For all the cases, the contrast between
the tests for equal and unequal lengths is similar.

5. Concluding remarks

This paper focuses on the development of a periodogram-based test for comparison of time series
with unequal length. The proposed test uses the interpolated periodogram method of Caiado
et al. [8] to compute the individual periodogram ordinates at different Fourier frequencies. It
can perform very well for comparing stationary processes with similar sample properties, for
comparing stationary and near-nonstationary processes, and for comparing short-memory and
long-memory processes. The estimated power and sizes of the tests for both equal and unequal
lengths give similar results, which shows the robustness of the proposed approach.

We have also developed a time domain parametric approach based on the distance between
parameter estimates of the same model. We found that the parametric test had very high power
to distinguish between two distinct processes. However, contrarily to the periodogram-based test,
which is easy to implement and computational fast, the parametric approach needs ad hoc ARMA
modelling of several time series.

For reference, the proposed tests are compared with a likelihood ratio test based on the pooled
spectra. The simulation study shows that the periodogram-distance-based tests are generally more
powerful than the likelihood ratio approach for comparison of time series generated from different
processes.
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