We propose and study a new frequency-domain procedure for characterizing and comparing large sets of long time series. Instead of using all the information available from data, which would be computationally very expensive, we propose some regulariza-tion rules in order to select and summarize the most relevant information for clustering purposes. Essentially, we suggest to use a fragmented periodogram computed around the driving cyclical components of interest and to compare the various estimates. This procedure is computationally simple, but able to condense relevant information of the time series. A simulation exercise shows that the smoothed fragmented periodogram works in general better than the non-smoothed one and not worse than the complete periodogram for medium to large sample sizes. We illustrate this procedure in a study of the evolution of several stock markets indices. We further show the effect of recent financial crises over these indices behaviour.
Há na história da ciência algumas datas que marcam revoluções no nosso conhecimento do Universo. O ano de 1666 constitui, certamente, uma dessas datas. Foi então que Isaac Newton, na altura com 23 anos, criou o cálculo integral e diferencial, a teoria da gravitação universal e a teoria das cores.
“We are starting to see policy makers and politicians engage with evidence bases and relatively recent discussions about research that are dominating the discourse between educators.”
Um programa de conversa para debater e aprofundar investigação recente sobre temas de educação. Uma parceria Rádio Observador/Iniciativa Educação. Para ouvir/ver carregue aqui.